Weekly 2 Solutions

Directions: Complete the following exercises from the Active Calculus textbook. You can click the links below to go directly to the exercise.

1. Exercise 9.5.11. Here's an updated visualization with the data from the solution: GeoGebra:Exercise 9.5.11.

Solution. **a.** The direction of the line is $\mathbf{u} = \langle -2, 1, 3 \rangle$.

- **b.** Following the definition, the parametric equations are given by x(t) = -4 2t, y(t) = 2 + t and z(t) = 17 + 5t.
- **c.** The lines are not parallel. Therefore, the lines intersect if and only if there exists a unique $(s,t) \in \mathbb{R}^2$ such that x(t) = x(s), y(t) = y(s), and z(t) = z(s). This is a system of three equations in two variables:

$$\begin{cases} -4 - 2t = 4 - 2s \\ 2 + t = -2 + s \\ 17 + 5t = 1 + 3s \end{cases}$$

By substitution or elimination, you will find that (s,t) = (2,-2) is the unique pair. Therefore, the lines intersect at the points (0,0,7).

d. The angle $0 \le \theta \le \pi$ between the lines is given by the angle between the direction vectors **u** and **v**. Therefore,

$$\theta = \cos^{-1} \left(\mathbf{u} \cdot \mathbf{v} / |\mathbf{u}| |\mathbf{v}| \right) = 12.6 \deg.$$

e. We need to find a point on the plane and a normal vector. A point on the plane is the point of intersection (0, 0, 7) of the two lines since both lines are contained in the plane. A normal vector must be perpendicular to both the lines. Therefore, we can take $\mathbf{n} = \mathbf{u} \times \mathbf{v} = \langle 2, 4, 0 \rangle$ as the normal vector. Then the vector equation of the plane is given by

$$\langle 2, 4, 0 \rangle \cdot \langle x, y, z \rangle = \langle 2, 4, 0 \rangle \cdot \langle 0, 0, 7 \rangle$$

and the scalar equation is given by

$$2x + 4y = 0.$$

2. Exercise 9.5.12. It will help to draw a picture.¹

Solution. **a.** A normal vector is $\mathbf{n} = \langle 4, -5, 1 \rangle$.

b. The plane contains the vectors $\mathbf{u} = \langle 1, 1, 1 \rangle - \langle 0, 1, -1 \rangle = \langle 1, 0, 2 \rangle$ and $\mathbf{v} = \langle 1, 1, 1 \rangle - \langle 4, 2, -1 \rangle = \langle -3, -1, 2 \rangle$. Therefore, $\mathbf{m} = \mathbf{u} \times \mathbf{v} = \langle 2, -8, -1 \rangle$ is a normal vector. Thus, a vector equation of the plane is given by

$$\langle 2, -8, -1 \rangle \cdot \langle x, y, z \rangle = \langle 2, -8, -1 \rangle \cdot \{1, 1, 1\}$$

and a scalar equation is given by

$$2x - 8y - z = -7.$$

 $^{^1 \}rm Once$ you have drawn the picture for yourself, you can see this visualization of the situation: GeoGebra: Exercise 9.5.12

- c. The angle between the planes is the acute angle between the normal vectors. A standard calculation shows that the angle is 29.18 deg.
- **d.** A point (x_0, y_0, z_0) in both planes must satisfy both equations. Therefore, $4x_0 5y_0 + 2 + 2x_0 8y_0 + 7 = 0$. This simplifies to $6x_0 13y_0 = -9$. Pick $(x_0, y_0) = (5, 3)$ which satisfies the equation. Then $z_0 = 2 * 5 8 * 3 + 7 = -7$ so that (5, 3, -7) is a point on both planes.
- **e.** A direction vector \mathbf{w} for the line of intersection of the two planes is given by the cross product of their normal vectors. Therefore,

$$\mathbf{w} = \langle 4, -5, 1 \rangle \times \langle 2, -8, -1 \rangle = \langle 13, 6, -22 \rangle.$$

Since (5, 3, -7) is a point in the line, the vector form of the line is given by

$$\mathbf{r}(t) = \langle 5, 3, -7 \rangle + t \langle 13, 6, -22 \rangle.$$

f. By definition, the parametric equations are given by x(t) = 5 + 13t, y(t) = 3 + 6t and z(t) = -7 - 22t.

- **3.** Let p denote the plane with scalar equation 2x+2y+z = 1. Let P = (0, 0, 1) and Q = (2, -1, 1). A vector normal to p is $\mathbf{n} = (2, 2, 1)$.
 - **a.** Show that P lies in the plane p, but Q does not.
 - **b.** Compute $|\text{comp}_{\mathbf{n}}(\overrightarrow{PQ})|$ and explain why this is the shortest distance from Q to the plane p.

Here's the relevant visualization: GeoGebra: Distance from a Point to a Plane.

Solution. a. Just check that P satisfies the scalar equation and that Q does not.

b. Note that $\overrightarrow{PQ} = \langle 2, -1, 0 \rangle$. Using the formula for the component of this vector along **n**, we have

$$|\mathrm{comp}_{\mathbf{n}}\overrightarrow{PQ}| = \frac{2}{3}.$$

As we saw in Section 9.3, we can write $\overrightarrow{PQ} = \text{proj}_{\mathbf{n}}\overrightarrow{PQ} + \text{proj}_{\perp\mathbf{n}}\overrightarrow{PQ}$ where $\text{proj}_{\mathbf{n}}\overrightarrow{PQ}$ is a vector parallel to \mathbf{n} . Since \mathbf{n} is the normal vector for the plane, this means that $|\text{proj}_{\mathbf{n}}\overrightarrow{PQ}| = |\text{comp}_{\mathbf{n}}\overrightarrow{PQ}|$ is the length of the line segment that is perpendicular to p and joins a (unique) point R in the plane to Q. Geometrically, it is clear that the length of this line segment is the shortest distance from P to p.

4. Exercise 9.7.15. For part (d), you are asked to graph something in 3D. Use the GeoGebra 3D Calculator to do it.² You do not need to include the graph in your write-up (unless you want to).

Solution. **a.** A parameterization is given by $\mathbf{r}(t) = \langle 3, t, \sqrt{9 + t^2} \rangle$.

b. A parameterization is given by $\mathbf{w}(t) = \langle t, 4, \sqrt{t^2 + 16} \rangle$.

c. As in the preceding problem, it is given by $\mathbf{r}'(4) \times \mathbf{w}'(3) = \langle 0, 1, 4/5 \rangle \times \langle 1, 0, 3/5 \rangle = \langle 3/5, 4/5, -1 \rangle$.

²In case you haven't noticed: I think GeoGebra is awesome for visualizing calculus.

d. A point in the tangent plane is (3, 4, 5). Therefore, the scalar equation of the plane is given by

$$\frac{3}{5}x + \frac{4}{5}y - z = 0.$$

The relevant visualization is here: GeoGebra: Exercise 9.7.15